EconPapers    
Economics at your fingertips  
 

An FPGA-based approach to the automatic generation of VHDL code for industrial control systems applications: A case study of MSOGIs implementation

P. Martín, E. Bueno, Fco. J. Rodríguez, O. Machado and B. Vuksanovic

Mathematics and Computers in Simulation (MATCOM), 2013, vol. 91, issue C, 178-192

Abstract: When used for specifying control systems, system level design tools such as Xilinx System Generator (XSG) allows the use of Simulink for designs based on Field Programmable Gate Arrays (FPGAs). This increases productivity by reducing the wide gap between control system designers and FPGA-based implementations. However, there is still a need for new methods to bridge the gap since a direct implementation from XSG may not be an optimal solution when constraints are imposed. This is particularly true for resource-dominated circuits, where the number of operational units exceed the number of available resources. This paper presents both a methodology and a tool aimed at automatically reducing the required resources, in particular in systems where the required sampling period is greater than the computation time delay. An automatic process of converting XSG specifications into efficient Very High Speed Integrated Circuit Hardware Description Language (VHDL) code is described. The process mainly involves customized fixed-point hardware definition, Data Flow Graph (DFG) extraction, resource-constrained and latency-constrained scheduling and VHDL specification of the system, inter alia. This solution considerably improves on the results obtained by XSG.

Keywords: FPGA-based systems; System-level specification; Control systems; Scheduling; Xilinx System Generator (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475412001541
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:91:y:2013:i:c:p:178-192

DOI: 10.1016/j.matcom.2012.07.004

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:91:y:2013:i:c:p:178-192