Modeling and multi-loop feedback control design of a SEPIC power factor corrector in single-phase rectifiers
H.Y. Kanaan and
K. Al-Haddad
Mathematics and Computers in Simulation (MATCOM), 2013, vol. 91, issue C, 274-283
Abstract:
In this paper, a comparative analysis of three multi-loops control schemes dedicated to the single ended primary inductance converter (SEPIC) power factor corrector (PFC) is presented. The first control technique uses a robust hysteresis current controller; the second control strategy consists of a frequency–domain linear design of regulators on the basis of a small-signal averaged model of the converter, whereas the third control design method uses the input/output feedback linearization approach applied on the large-signal state-space averaged model of the converter. In order to verify and compare the performance of all control schemes, numerical simulations are carried out on a switching-functions-based model of the converter, which is implemented using Matlab/Simulink. The control systems are tested under both rated and disturbed operating conditions. The systems performance is evaluated in terms of source current total harmonic distortion (THD), input power factor, and DC voltage regulation toward load disturbances.
Keywords: SEPIC; Power factor correction; THD; Rectifiers; Modeling; Control; Simulation (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475412001395
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:91:y:2013:i:c:p:274-283
DOI: 10.1016/j.matcom.2012.06.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().