Volatility spillovers from the Chinese stock market to economic neighbours
David Allen,
Ron Amram and
Michael McAleer
Mathematics and Computers in Simulation (MATCOM), 2013, vol. 94, issue C, 238-257
Abstract:
This paper examines whether there is evidence of spillovers of volatility from the Chinese stock market to its neighbours and trading partners, including Australia, Hong Kong, Singapore, Japan and USA. China's increasing integration into the global market may have important consequences for investors in related markets. In order to capture these potential effects, we explore these issues using an Autoregressive Moving Average (ARMA) return equation. A univariate GARCH model is then adopted to test for the persistence of volatility in stock market returns, as represented by stock market indices. Finally, univariate GARCH, multivariate VARMA–GARCH, and multivariate VARMA–AGARCH models are used to test for constant conditional correlations and volatility spillover effects across these markets. Each model is used to calculate the conditional volatility between both the Shenzhen and Shanghai Chinese markets and several other markets around the Pacific Basin Area, including Australia, Hong Kong, Japan, Taiwan and Singapore, during four distinct periods, beginning 27 August 1991 and ending 17 November 2010. The empirical results show some evidence of volatility spillovers across these markets in the pre-GFC periods, but there is little evidence of spillover effects from China to related markets during the GFC. We undertook some additional analysis for this period featuring an exploration of whether there was any spillover effect in the mean equations as well as in the variance equations. We used a bimean equation to model the conditional mean in the individual markets plus an ARMA model to capture volatility spillovers from China to the five markets considered. This augmented model showed much greater evidence of spillovers. We also suspected that the correlations were not constant and applied a moving window of 120 days of daily observations to explore time-varying conditional and fitted correlations. There was evidence of non-constant correlations and even a period of negative correlations between the US and China at the height of the GFC. This is presumably because the GFC was initially a US phenomenon, before spreading to developed markets around the globe and it was not a Chinese phenomenon.
Keywords: Volatility spillovers; VARMA–GARCH; VARMA–AGARCH; Chinese stock market (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475413000062
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Volatility Spillovers from the Chinese Stock Market to Economic Neighbours (2011) 
Working Paper: Volatility Spillovers from the Chinese Stock Market to Economic Neighbours (2011) 
Working Paper: Volatility Spillovers from the Chinese Stock Market to Economic Neighbours (2011) 
Working Paper: Volatility Spillovers from the Chinese Stock Market to Economic Neighbours (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:94:y:2013:i:c:p:238-257
DOI: 10.1016/j.matcom.2013.01.001
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().