EconPapers    
Economics at your fingertips  
 

On the convexity and compactness of the integral of a Banach space valued correspondence

Konrad Podczeck

Journal of Mathematical Economics, 2008, vol. 44, issue 7-8, 836-852

Abstract: We characterize the class of finite measure spaces which guarantee that for a correspondence [phi] from to a general Banach space the Bochner integral of [phi] is convex. In addition, it is shown that if [phi] has weakly compact values and is integrably bounded, then, for this class of measure spaces, the Bochner integral of [phi] is weakly compact, too. Analogous results are provided with regard to the Gelfand integral of correspondences taking values in the dual of a separable Banach space, with "weakly compact" replaced by "weak*-compact." The crucial condition on the measure space concerns its measure algebra and is consistent with having T=[0,1] and [mu] to be an extension of Lebesgue measure.

Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4068(07)00036-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:44:y:2008:i:7-8:p:836-852

Access Statistics for this article

Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii

More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:mateco:v:44:y:2008:i:7-8:p:836-852