Judgment aggregators and Boolean algebra homomorphisms
Frederik Herzberg
Journal of Mathematical Economics, 2010, vol. 46, issue 1, 132-140
Abstract:
The theory of Boolean algebras can be fruitfully applied to judgment aggregation: assuming universality, systematicity and a sufficiently rich agenda, there is a correspondence between (i) non-trivial deductively closed judgment aggregators and (ii) Boolean algebra homomorphisms defined on the power-set algebra of the electorate. Furthermore, there is a correspondence between (i) consistent complete judgment aggregators and (ii) 2-valued Boolean algebra homomorphisms defined on the power-set algebra of the electorate. Since the shell of such a homomorphism equals the set of winning coalitions and since (ultra)filters are shells of (2-valued) Boolean algebra homomorphisms, we suggest an explanation for the effectiveness of the (ultra)filter method in social choice theory. From the (ultra)filter property of the set of winning coalitions, one obtains two general impossibility theorems for judgment aggregation on finite electorates, even without assuming the Pareto principle.
Keywords: Judgment; aggregation; Systematicity; Impossibility; theorems; Filter; Ultrafilter; Boolean; algebra; homomorphism (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4068(09)00070-6
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Judgment aggregators and Boolean algebra homomorphisms (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:46:y:2010:i:1:p:132-140
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().