Proper scoring rules with arbitrary value functions
Fang Fang,
Maxwell Stinchcombe () and
Andrew B. Whinston
Journal of Mathematical Economics, 2010, vol. 46, issue 6, 1200-1210
Abstract:
Abstract A scoring rule is proper if it elicits an expert's true beliefs as a probabilistic forecast, and it is strictly proper if it uniquely elicits an expert's true beliefs. The value function associated with a (strictly) proper scoring rule is (strictly) convex on any convex set of beliefs. This paper gives conditions on compact sets of possible beliefs [Theta] that guarantee that every continuous value function on [Theta] is the value function associated with some strictly proper scoring rule. Compact subsets of many parametrized sets of distributions on satisfy these conditions.
Keywords: Expert; opinions; Elicitation; Proper; scoring; rules; Value; functions; Convex; extensions; of; functions; Bauer; simplexes; Choquet'; s; theorem (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4068(10)00098-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:46:y:2010:i:6:p:1200-1210
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().