EconPapers    
Economics at your fingertips  
 

Collectively rational voting rules for simple preferences

Biung-Ghi Ju ()

Journal of Mathematical Economics, 2011, vol. 47, issue 2, 143-149

Abstract: Abstract We offer a rationality foundation of majority voting on two restricted domains of individual preferences proposed by Inada (1964). One is the domain consisting of (dichotomous) preferences that have at most two indifference classes, and the other is the domain where any set of three alternatives is partitioned into two non-empty subsets and alternatives in one set are strictly preferred to alternatives in the other set. On these two domains, we investigate whether majority voting is the unique way of generating transitive, quasi-transitive, or acyclic social preferences. First of all, we rule out non-standard voting rules by imposing monotonicity, anonymity, and neutrality. Our main results show that majority rule is the unique voting rule satisfying transitivity, yet all other voting rules satisfy acyclicity (also quasi-transitivity on the second domain). Thus we find a very thin border dividing majority and other voting rules, namely, the gap between transitivity and acyclicity.

Keywords: Collective; rationality; Transitivity; Quasi-transitivity; Acyclicity; Majority; Voting; rule; Dichotomous; preferences (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406811000061
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:47:y:2011:i:2:p:143-149

Access Statistics for this article

Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii

More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2019-09-27
Handle: RePEc:eee:mateco:v:47:y:2011:i:2:p:143-149