EconPapers    
Economics at your fingertips  
 

Foundations of spatial preferences

Jon Eguia

Journal of Mathematical Economics, 2011, vol. 47, issue 2, 200-205

Abstract: Abstract I provide an axiomatic foundation for the assumption of specific utility functions in a multidimensional spatial model, endogenizing the spatial representation of the set of alternatives. Given a set of objects with multiple attributes, I find simple necessary and sufficient conditions on preferences such that there exists a mapping of the set of objects into a Euclidean space where the utility function of the agent is linear city block, quadratic Euclidean, or more generally, it is the [delta] power of one of Minkowski (1886) metric functions. In a society with multiple agents I characterize the set of preferences that are representable by weighted linear city block utility functions, and I discuss how the result extends to other Minkowski utility functions.

Keywords: Utility; representation; Spatial; models; Multidimensional; preferences; Spatial; representation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406811000292
Full text for ScienceDirect subscribers only

Related works:
Working Paper: The Foundations of Spatial Preferences (2008)
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:47:y:2011:i:2:p:200-205

Access Statistics for this article

Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii

More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:mateco:v:47:y:2011:i:2:p:200-205