EconPapers    
Economics at your fingertips  
 

Comonotonicity, efficient risk-sharing and equilibria in markets with short-selling for concave law-invariant utilities

R.-A. Dana

Journal of Mathematical Economics, 2011, vol. 47, issue 3, 328-335

Abstract: In finite markets with short-selling, conditions on agents’ utilities insuring the existence of efficient allocations and equilibria are by now well understood. In infinite markets, a standard assumption is to assume that the individually rational utility set is compact. Its drawback is that one does not know whether this assumption holds except for very few examples as strictly risk averse expected utility maximizers with same priors. The contribution of the paper is to show that existence holds for the class of strictly concave second order stochastic dominance preserving utilities. In our setting, it coincides with the class of strictly concave law-invariant utilities. A key tool of the analysis is the domination result of Lansberger and Meilijson that states that attention may be restricted to comonotone allocations of aggregate risk. Efficient allocations are characterized as the solutions of utility weighted problems with weights expressed in terms of the asymptotic slopes of the restrictions of agents’ utilities to constants. The class of utilities which is used is shown to be stable under aggregation.

Keywords: Law invariant utilities; Comonotonicity; Pareto efficiency; Equilibria with short-selling; Aggregation; Representative agent (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406811000322
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:47:y:2011:i:3:p:328-335

DOI: 10.1016/j.jmateco.2010.12.016

Access Statistics for this article

Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii

More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:mateco:v:47:y:2011:i:3:p:328-335