Risk aversion for variational and multiple-prior preferences
Jan Werner
Journal of Mathematical Economics, 2011, vol. 47, issue 3, 382-390
Abstract:
The objective of this paper is to identify variational preferences and multiple-prior (maxmin) expected utility functions that exhibit aversion to risk under some probability measure from among the priors. Risk aversion has profound implications on agents’ choices and on market prices and allocations. Our approach to risk aversion relies on the theory of mean-independent risk of Werner (2009). We identify necessary and sufficient conditions for risk aversion of convex variational preferences and concave multiple-prior expected utilities. The conditions are stability of the cost function and of the set of probability priors, respectively, with respect to a probability measure. The two stability properties are new concepts. We show that cost functions defined by the relative entropy distance or other divergence distances have that property. Set of priors defined as cores of convex distortions of probability measures or neighborhoods in divergence distances have that property, too.
Keywords: Risk aversion; Mean-independent risk; Multiple-prior expected utility; Variational preferences (search for similar items in EconPapers)
JEL-codes: D81 G11 (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406810000959
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:47:y:2011:i:3:p:382-390
DOI: 10.1016/j.jmateco.2010.08.020
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().