EconPapers    
Economics at your fingertips  
 

Risk apportionment via bivariate stochastic dominance

Octave Jokung

Journal of Mathematical Economics, 2011, vol. 47, issue 4-5, 448-452

Abstract: This paper extends to bivariate utility functions, Eeckhoudt et al.’s (2009) result for the combination of ‘bad’ and ‘good’. The decision-maker prefers to get some of the ‘good’ and some of the ‘bad’ to taking a chance on all the ‘good’ or all the ‘bad’ where ‘bad’ is defined via (N,M)-increasing concave order. We generalize the concept of bivariate risk aversion introduced by Richard (1975) to higher orders. Importantly, in the bivariate framework, preference for the lottery [(X̃,T̃);(Ỹ,Z̃)] to the lottery [(X̃,Z̃);(Ỹ,T̃)] when (X̃,Z̃) dominates (Ỹ,T̃) via (N,M)-increasing concave order allows us to assert bivariate risk apportionment of order (N,M) and to extend the concept of risk apportionment defined by Eeckhoudt and Schlesinger (2006).

Keywords: Bivariate utility function; Correlation aversion; Cross-prudence; Cross-temperance; Pair-wise risk aversion; Risk apportionment; Stochastic dominance (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406811000577
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:47:y:2011:i:4:p:448-452

DOI: 10.1016/j.jmateco.2011.06.003

Access Statistics for this article

Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii

More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:mateco:v:47:y:2011:i:4:p:448-452