Axioms for Euclidean preferences with a valence dimension
Yaron Azrieli
Journal of Mathematical Economics, 2011, vol. 47, issue 4-5, 545-553
Abstract:
Recent works on political competition incorporate a valence dimension to the standard spatial model. The goal of this paper is to axiomatize rankings of candidates by voters that are consistent with Euclidean preferences on the policy space and an additive valence dimension. Specifically, we consider the case where only the ideal point in the policy space and the ranking over candidates are known for each voter. We characterize the case where there are policies x1,…,xm for m candidates and numbers v1,…,vm representing valence scores, such that a voter with an ideal policy y ranks the candidates according to vi−‖xi−y‖2.
Keywords: Elections; Spatial models; Valence; Euclidean preferences (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440681100070X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:47:y:2011:i:4:p:545-553
DOI: 10.1016/j.jmateco.2011.07.004
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().