General conditions for the existence of maximal elements via the uncovered set
John Duggan
Journal of Mathematical Economics, 2011, vol. 47, issue 6, 755-759
Abstract:
This paper disentangles the topological assumptions of classical results (e.g.,Walker, 1977 on the existence of maximal elements from rationality conditions. It is known from the social choice literature that under the standard topological conditions—with no rationality assumptions on preferences—there is an element such that the upper section of strict preference at that element is minimal in terms of set inclusion, i.e., the uncovered set is nonempty. Assuming the finite subordination property, a condition that weakens known acyclicity and convexity assumptions, each such uncovered alternative is in fact maximal. Implications are a generalization of a result of Yannelis and Prabhakar (1983) on semi-convexity, an extension of Fan’s (1961) lemma on KKM correspondences, and the existence of fixed points for subordinate convex correspondences generalizing the work of Browder (1968).
Keywords: Maximal element; Existence; Uncovered set; Fixed point (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406811000899
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:47:y:2011:i:6:p:755-759
DOI: 10.1016/j.jmateco.2011.09.008
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().