On the dimensionality of bounds generated by the Shapley–Folkman theorem
Lawrence Schmidt
Journal of Mathematical Economics, 2012, vol. 48, issue 1, 59-63
Abstract:
The Shapley–Folkman theorem places a scalar upper bound on the distance between a sum of non-convex sets and its convex hull. We observe that some information is lost when a vector is converted to a scalar to generate this bound and propose a simple normalization of the underlying space which mitigates this loss of information. As an example, we apply this result to the Anderson (1978) core convergence theorem, and demonstrate how our normalization leads to an intuitive, unitless upper bound on the discrepancy between an arbitrary core allocation and the corresponding competitive equilibrium allocation.
Keywords: Shapley–Folkman theorem; General equilibrium theory (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406811001285
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:48:y:2012:i:1:p:59-63
DOI: 10.1016/j.jmateco.2011.11.001
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().