A note on object allocation under lexicographic preferences
Daniela Saban and
Jay Sethuraman
Journal of Mathematical Economics, 2014, vol. 50, issue C, 283-289
Abstract:
We consider the problem of allocating m objects to n agents. Each agent has unit demand, and has strict preferences over the objects. There are qj units of object j available and the problem is balanced in the sense that ∑jqj=n. An allocation specifies the amount of each object j that is assigned to each agent i, when the objects are divisible; when the objects are indivisible and exactly one unit of each object is available, an allocation is interpreted as the probability that agent i is assigned one unit of object j. In our setting, agent preferences over objects are extended to preferences over allocations using the natural lexicographic order. The goal is to design mechanisms that are efficient, envy-free, and strategy-proof. Schulman and Vazirani show that an adaptation of the probabilistic serial mechanism satisfies all these properties when qj≥1 for all objects j. Our first main result is a characterization of problems for which efficiency, envy-freeness, and strategy-proofness are compatible. Furthermore, we show that these three properties do not characterize the serial mechanism. Finally, we show that when indifferences between objects are permitted in agent preferences, it is impossible to satisfy all three properties even in the standard setting of “house” allocation in which all object supplies are 1.
Keywords: Object allocation; Lexicographic preferences; Strategy-proofness; Envy-freeness; Efficiency (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406813001195
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:50:y:2014:i:c:p:283-289
DOI: 10.1016/j.jmateco.2013.12.002
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().