Optimal lottery
Charles Dennery and
Alexis Direr
Journal of Mathematical Economics, 2014, vol. 55, issue C, 15-23
Abstract:
This article proposes an equilibrium approach to lottery markets in which a firm designs an optimal lottery to rank-dependent expected utility (RDU) consumers. We show that a finite number of prizes cannot be optimal, unless implausible utility and probability weighting functions are assumed. We then investigate the conditions under which a probability density function can be optimal. With standard RDU preferences, this implies a discrete probability on the ticket price, and a continuous probability on prizes afterwards. Under some preferences consistent with experimental literature, the optimal lottery follows a power-law distribution, with a plausibly extremely high degree of prize skewness.
Keywords: Decision-making under risk; Lottery games; Firm behavior (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406814001219
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:55:y:2014:i:c:p:15-23
DOI: 10.1016/j.jmateco.2014.09.011
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().