Strategic behavior in non-atomic games
Mehmet Barlo () and
Guilherme Carmona
Journal of Mathematical Economics, 2015, vol. 60, issue C, 134-144
Abstract:
In order to remedy the possible loss of strategic interaction in non-atomic games with a societal choice, this study proposes a refinement of Nash equilibrium, strategic equilibrium. Given a non-atomic game, its perturbed game is one in which every player believes that he alone has a small, but positive, impact on the societal choice; and a distribution is a strategic equilibrium if it is a limit point of a sequence of Nash equilibrium distributions of games in which each player’s belief about his impact on the societal choice goes to zero. After proving the existence of strategic equilibria, we show that all of them must be Nash. We also show that all regular equilibria of smooth non-atomic games are strategic. Moreover, it is displayed that in many economic applications, the set of strategic equilibria coincides with that of Nash equilibria of large finite games.
Keywords: Nash equilibrium; Strategic equilibrium; Games with a continuum of players; Equilibrium distributions (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406815000877
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Strategic behavior in non-atomic games (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:60:y:2015:i:c:p:134-144
DOI: 10.1016/j.jmateco.2015.07.003
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().