Risk neutrality regions
Yakar Kannai,
Larry Selden,
Minwook Kang and
Xiao Wei
Journal of Mathematical Economics, 2016, vol. 62, issue C, 75-89
Abstract:
An Expected Utility maximizer can be risk neutral over a set of nondegenerate multivariate distributions even though her NM (von Neumann Morgenstern) index is not linear. We provide necessary and sufficient conditions for an individual with a concave NM utility to exhibit risk neutral behavior and characterize the regions of the choice space over which risk neutrality is exhibited. The least concave decomposition of the NM index introduced by Debreu (1976) plays an important role in our analysis as do the notions of minimum concavity points and minimum concavity directions. For the special case where one choice variable is certain, the analysis of risk neutrality requires modification of the Debreu decomposition. The existence of risk neutrality regions is shown to have important implications for the classic consumption–savings and representative agent equilibrium asset pricing models.
Keywords: Risk neutrality; Expected Utility; Least concave utility; Minimum concavity points (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406815001287
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:62:y:2016:i:c:p:75-89
DOI: 10.1016/j.jmateco.2015.10.010
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().