Approximate equilibria in strongly symmetric games
Shiran Rachmilevitch
Journal of Mathematical Economics, 2016, vol. 66, issue C, 52-57
Abstract:
I study approximate equilibria in games with countably many players and finitely many pure strategies, with an emphasis on symmetric games. In a class of games called strongly symmetric tail function games, the following holds: existence of perfect ϵ-equilibrium (Solan and Vielle, 2001) for all ϵ>0 is equivalent to the existence of Nash equilibrium. In the larger class of strongly symmetric (not necessarily tail function) games, this equivalence no longer holds. The main result is that every strongly symmetric game has a symmetric ϵ proper equilibrium (Myerson, 1978) which is an ϵ-equilibrium (Radner, 1980). This existence result fails to hold in the larger class of weakly symmetric games.
Keywords: Infinite games; ϵ-equilibrium; Symmetric games (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406816300635
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:66:y:2016:i:c:p:52-57
DOI: 10.1016/j.jmateco.2016.07.003
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().