The composite iteration algorithm for finding efficient and financially fair risk-sharing rules
Jaroslav Pazdera,
Johannes Schumacher and
Bas J.M. Werker
Journal of Mathematical Economics, 2017, vol. 72, issue C, 122-133
Abstract:
We consider the problem of finding an efficient and fair ex-ante rule for division of an uncertain monetary outcome among a finite number of von Neumann–Morgenstern agents. Efficiency is understood here, as usual, in the sense of Pareto efficiency subject to the feasibility constraint. Fairness is defined as financial fairness with respect to a predetermined pricing functional. We show that efficient and financially fair allocation rules are in one-to-one correspondence with positive eigenvectors of a nonlinear homogeneous and monotone mapping associated to the risk sharing problem. We establish relevant properties of this mapping. On the basis of this, we obtain a proof of existence and uniqueness of solutions via nonlinear Perron–Frobenius theory, as well as a proof of global convergence of the natural iterative algorithm. We argue that this algorithm is computationally attractive, and discuss its rate of convergence.
Keywords: Risk sharing; Fair division; Perron–Frobenius theory; Eigenvector computation; Collectives (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406817301027
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:72:y:2017:i:c:p:122-133
DOI: 10.1016/j.jmateco.2017.07.008
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().