Interim correlated rationalizability in infinite games
Jonathan Weinstein and
Muhamet Yildiz ()
Journal of Mathematical Economics, 2017, vol. 72, issue C, 82-87
Abstract:
In a Bayesian game, assume that the type space is a complete, separable metric space, the action space is a compact metric space, and the payoff functions are continuous. We show that the iterative and fixed-point definitions of interim correlated rationalizability (ICR) coincide, and ICR is non-empty-valued and upper hemicontinuous. This extends the finite-game results of Dekel et al. (2007), who introduced ICR. Our result applies, for instance, to discounted infinite-horizon dynamic games.
Keywords: Rationalizability; Incomplete information (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406817300897
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:72:y:2017:i:c:p:82-87
DOI: 10.1016/j.jmateco.2017.07.002
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().