EconPapers    
Economics at your fingertips  
 

Stackelberg equilibrium with multiple firms and setup costs

Antonio Tesoriere

Journal of Mathematical Economics, 2017, vol. 73, issue C, 86-102

Abstract: I provide conditions that guarantee that a Stackelberg game with a setup cost and an integer number of identical leaders and followers has an equilibrium in pure strategies. The main feature of the game is that when the marginal follower leaves the market the price jumps up, so that a leader’s payoff is neither continuous nor quasiconcave. To show existence I check that a leader’s value function satisfies the following single crossing condition: When the other leaders produce more the leader never accommodates entry of more followers. If demand is strictly logconcave, and if marginal costs are both non decreasing and not flatter than average costs, then a Stackelberg equilibrium exists. Besides showing existence I characterize the equilibrium set and provide a number of results that contribute to the applied literature. As the number of leaders increases, leaders produce more and eventually they deter entry. Leaders produce more than the Cournot best reply, but they may underinvest in entry deterrence. As the number of followers increases, leaders become more aggressive. When this number is large, if leaders can produce the limit quantity and at the same time have market power, then they deter entry.

Keywords: Stackelberg equilibrium; Setup costs; Entry deterrence; Non quasiconcave payoff; Existence of the equilibrium; Supermodular games (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406816300726
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:73:y:2017:i:c:p:86-102

Access Statistics for this article

Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii

More articles in Journal of Mathematical Economics from Elsevier
Series data maintained by Dana Niculescu ().

 
Page updated 2017-12-16
Handle: RePEc:eee:mateco:v:73:y:2017:i:c:p:86-102