Continuous SSB representation of preferences
Miroslav Pištěk
Journal of Mathematical Economics, 2018, vol. 77, issue C, 59-65
Abstract:
We propose a topological variant of skew-symmetric bilinear (SSB) representation of preferences. First, semi-Fishburn relations are defined by assuming convexity and coherence, a newly considered topological property. We show that lower and upper semi-Fishburn relations admit the existence of a minimal element and a maximal element, respectively. Then axiom of “balance” is stated and we prove that a binary relation has a continuous SSB representation if and only if it is a balanced (lower and upper semi-)Fishburn relation. The relationship between the above definitions and the original axioms of (algebraic) SSB representation is fully discussed. Finally, by applying this theory to probability measures, we show the existence of a maximal preferred measure for an infinite set of pure outcomes, thus generalizing all available existence theorems of (algebraic) SSB representation. Note that by using this framework to, e.g., finitely additive measures, one may develop a non-probabilistic variant of SSB representation as well.
Keywords: SSB representation; Fishburn preference relation; Maximal preferred element; Non-transitive preferences (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406818300673
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:77:y:2018:i:c:p:59-65
DOI: 10.1016/j.jmateco.2018.06.005
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().