Economics at your fingertips  

Strategic vote trading under complete information

Dimitrios Xefteris and Nicholas Ziros

Journal of Mathematical Economics, 2018, vol. 78, issue C, 52-58

Abstract: We study two-party elections considering that: (a) prior to the voting stage voters are free to trade votes for money according to the rules of the Shapley–Shubik strategic market games; and (b) voters’ preferences – both ordinal rankings and cardinal intensities – arepublic information. While under plurality rule no trade occurs, under a power-sharing system (voters’ utilities are proportionally increasing in the vote share of their favorite party) full trade is always an equilibrium (two voters – the strongest supporter of each party – buy the votes of all others). Notably, this equilibrium implements proportional justice with respect to the two buyers: the ratio of the parties’ vote shares is equal to the ratio of the preference intensities of the two most opposing voters.

Keywords: Vote trading; Complete information; Strategic market games; Power sharing; Proportional justice (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Strategic vote trading under complete information (2017) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii

More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2019-10-17
Handle: RePEc:eee:mateco:v:78:y:2018:i:c:p:52-58