EconPapers    
Economics at your fingertips  
 

Condorcet domains satisfying Arrow’s single-peakedness

Arkadii Slinko

Journal of Mathematical Economics, 2019, vol. 84, issue C, 166-175

Abstract: Condorcet domains are sets of linear orders with the property that, whenever the preferences of all voters belong to this set, the majority relation of any profile with an odd number of voters is transitive. Maximal Condorcet domains historically have attracted a special attention. We study maximal Condorcet domains that satisfy Arrow’s single-peakedness which is more general than Black’s single-peakedness. We show that all maximal Black’s single-peaked domains on the set of m alternatives are isomorphic but we found a rich variety of maximal Arrow’s single-peaked domains. We discover their recursive structure, prove that all of them have cardinality 2m−1, and characterise them by two conditions: connectedness and minimal richness. We also classify Arrow’s single-peaked Condorcet domains for m≤5 alternatives.

Keywords: Majority voting; Transitivity; Condorcet domains; Median graphs; Single-peaked property (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406819300874
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:84:y:2019:i:c:p:166-175

DOI: 10.1016/j.jmateco.2019.08.001

Access Statistics for this article

Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii

More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:mateco:v:84:y:2019:i:c:p:166-175