Risk preference heterogeneity in group contests
Philip Brookins and
Paan Jindapon
Journal of Mathematical Economics, 2021, vol. 95, issue C
Abstract:
We analyze the first model of a group contest with players that are heterogeneous in their risk preferences. In our model, individuals’ preferences are represented by a utility function exhibiting a generalized form of constant absolute risk aversion, allowing us to consider any combination of risk-averse, risk-neutral, and risk-loving players. We begin by proving equilibrium existence and uniqueness under both linear and convex investment costs. Then, we explore how the sorting of a compatible set of players by their risk attitudes into competing groups affects aggregate investment. With linear costs, a balanced sorting (i.e., minimizing the variance in risk attitudes across groups) always produces an aggregate investment level that is at least as high as an unbalanced sorting (i.e., maximizing the variance in risk attitudes across groups). Under convex costs, however, identifying which sorting is optimal is more nuanced and depends on preference and cost parameters.
Keywords: Group contest; Risk preference heterogeneity; Sorting (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406821000379
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:95:y:2021:i:c:s0304406821000379
DOI: 10.1016/j.jmateco.2021.102499
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().