Protection in numbers? Self-protection as a local public good
Clive D. Fraser
Journal of Mathematical Economics, 2021, vol. 96, issue C
Abstract:
In many contexts with endogenous physical risks – e.g., households, neighbourhood traffic calming, production quality control – risk reduction is a local public good. Risk-reduction incentives then depend on the protected population’s size. Focusing on a household’s physical risks modelled as an i.i.d. Bernoulli trials sequence with endogenous “success” probability, I give sufficient conditions for safety to increase with the number protected via both monotone comparative statics methodology and a “first-order” approach. I utilise a recursive decomposition of a covariance involving a monotonic function of a binomial variable and first-degree stochastic dominance (FSD). Because “protection” problems are generally non-concave, I give a detailed treatment of the second-order condition, again via FSD.
Keywords: Physical risk; Local public good; Binomial recurrence relation; Covariance; Stochastic dominance; Monotone comparative statics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406821000604
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:96:y:2021:i:c:s0304406821000604
DOI: 10.1016/j.jmateco.2021.102510
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().