Discounted and finitely repeated minority games with public signals
Jérôme Renault,
Sergio Scarlatti and
Marco Scarsini
Mathematical Social Sciences, 2008, vol. 56, issue 1, 44-74
Abstract:
We consider a repeated game where at each stage players simultaneously choose one of the two rooms. The players who choose the less crowded room are rewarded with one euro. The players in the same room do not recognize each other, and between the stages only the current majority room is publicly announced, hence the game has imperfect public monitoring. An undiscounted version of this game was considered by Renault et al. [Renault, J., Scarlatti, S., Scarsini, M., 2005. A folk theorem for minority games. Games Econom. Behav. 53 (2), 208-230], who proved a folk theorem. Here we consider a discounted version and a finitely repeated version of the game, and we strengthen our previous result by showing that the set of equilibrium payoffs Hausdorff-converges to the feasible set as either the discount factor goes to one or the number of repetition goes to infinity. We show that the set of public equilibria for this game is strictly smaller than the set of private equilibria.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165-4896(08)00004-8
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Discounted and finitely repeated minority games with public signals (2008)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matsoc:v:56:y:2008:i:1:p:44-74
Access Statistics for this article
Mathematical Social Sciences is currently edited by J.-F. Laslier
More articles in Mathematical Social Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().