EconPapers    
Economics at your fingertips  
 

The energy of the spin-glass state of a binary mixture at T = 0 and its variational properties

Sakari Inawashiro and Shigetoshi Katsura

Physica A: Statistical Mechanics and its Applications, 1980, vol. 100, issue 1, 24-44

Abstract: In the random-bond model of Ising spins, the concept of a multiple-bond distribution of effective field was introduced in the pair approximation. The integral equation for a single-bond distribution was derived intuitively. The variational energy at T = 0 is expressed in terms of two parameters μ and η where μ is the probability of zero effective field in the single-bond distribution and η is the magnetization per spin. For η = 0, the energy of the spin-glass state corresponds to a local minimum as a function of μ, for an even z (number of the nearest neighbours) and to an inflection point for an odd z. It was shown that the spin-glass state corresponds to a local minimum with respect to μ and η for z = 4, to an inflection point with respect to μ and a local minimum with respect to η for z = 3. It is conjectured that the maximum of the energy of the spin-glass state of Sherrington and Kirkpatrick is attributed not to the replica method, but to the mean field approximation. Stationary properties of the energy as a function of both μ and η were examined in detail.

Date: 1980
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843718090148X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:100:y:1980:i:1:p:24-44

DOI: 10.1016/0378-4371(80)90148-X

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:100:y:1980:i:1:p:24-44