EconPapers    
Economics at your fingertips  
 

Weyl's association, Wigner's function and affine geometry

N.L. Balazs

Physica A: Statistical Mechanics and its Applications, 1980, vol. 102, issue 2, 236-254

Abstract: According to Weyl one may associate a function with a dynamical operator; these functions depend on the parameters p and q and can be displayed in a p, q manifold, the W space. In the classical limit the W space becomes the phase space parametrised by the canonical variables. The function associated in this manner with the density operator is Wigner's function. It turns out that if Wigner's function is a delta function it cannot represent the density operator of a physically realisable state unless the argument of the delta-function is linear in the parameters a and q. In all other cases Wigner's function associated with a physically realisable state has a finite width, proportional to h23. Consequently straightness (linear combination of p and q) has a fundamental significance in the W space. Since this property is preserved under linear inhomogeneous transformations the W space will have a geometry generated by these transformations, the affine geometry of Euler, Moebius and Blaschke. In the present note we show how this comes about, how it simplifies the semiclassical approximations of Wigner's function, and makes one understand how in the classical limit this geometry is lost, allowing to be replaced by the geometry of canonical transformations.

Date: 1980
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843718090134X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:102:y:1980:i:2:p:236-254

DOI: 10.1016/0378-4371(80)90134-X

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:102:y:1980:i:2:p:236-254