The orientational relaxation of methane molecules in the solid phase II at low temperatures
M. Sprik and
N.J. Trappeniers
Physica A: Statistical Mechanics and its Applications, 1980, vol. 103, issue 3, 411-454
Abstract:
A model for the dynamics of the coupling between the orientations of the ordered CH4 molecules in phase II of solid methane at low temperatures is proposed. The model is equivalent to the dynamics of disordered solid hydrogen. The effective interaction strength is determined by the overlap of the librational ground states in the molecular field potential and vanishes in the classical limit. An approximate expression for the effective interaction strength is derived, showing an exponential dependence on the uncertainty of orientation in the librational ground states. This parameter is estimated from the experimental values of the tunnel energies. The second moments of the spectral densities of several anisotropic operators are evaluated in the infinite temperature limit. The resulting gaussian approximations for the spectra are applied in a derivation of the spin lattice relaxation time. The calculated values of the spin lattice relaxation time are compared to experiment.
Date: 1980
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437180900205
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:103:y:1980:i:3:p:411-454
DOI: 10.1016/0378-4371(80)90020-5
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().