EconPapers    
Economics at your fingertips  
 

Variational principle for regular and random Ising models on the cactus tree or on the usual lattice in the “cactus approximation”

T. Morita

Physica A: Statistical Mechanics and its Applications, 1981, vol. 105, issue 3, 620-630

Abstract: The distribution functions and the free energy are expressed in terms of the effective fields for the regular and random Ising models of an arbitrary spin S on the generalized cactus tree. The same expressions apply to systems on the usual lattice in the “cactus approximation” in the cluster variation method. For an ensemble of random Ising models of an arbitrary spin S on the generalized cactus tree, the equation for the probability distribution function of the effective fields is set up and the averaged free energy is expressed in terms of the probability distribution. The same expressions apply to the system on the usual lattice in the “cactus approximation”. We discuss the quantities on the usual lattice when the system or the ensemble of random systems has the translational symmetry. Variational properties of the free energy for a system and of the averaged free energy for an ensemble of random systems are noted. The “cactus approximations” are applicable to the Heisenberg model as well as to the Ising model of an arbitrary spin, and to ensembles of random systems of these models.

Date: 1981
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437181901151
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:105:y:1981:i:3:p:620-630

DOI: 10.1016/0378-4371(81)90115-1

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:105:y:1981:i:3:p:620-630