Hydrodynamics for an ideal fluid: Hamiltonian formalism and Liouville-equation
W. Van Saarloos,
D. Bedeaux and
P. Mazur
Physica A: Statistical Mechanics and its Applications, 1981, vol. 107, issue 1, 109-125
Abstract:
A Hamiltonian formalism for hydrodynamics of ideal fluids is developed with the help of Seliger and Whitham's variational principle. It is shown that a density distribution function in the phase space of the mass-density, momentum-density and energy-density fields obeys a Liouville-equation
Date: 1981
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437181900261
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:107:y:1981:i:1:p:109-125
DOI: 10.1016/0378-4371(81)90026-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().