Random walk on a random walk
K.W. Kehr and
R. Kutner
Physica A: Statistical Mechanics and its Applications, 1982, vol. 110, issue 3, 535-549
Abstract:
The authors investigate the random walk of a particle on a one-dimensional chain which has been constructed by a random-walk procedure. Exact expressions are given for the mean-square displacement and the fourth moment after n steps. The probability density after n steps is derived in the saddle-point approximation, for large n. These quantities have also been studied by numerical simulation. The extension to continuous time has been made where the particle jumps according to a Poisson process. The exact solution for the self-correlation function has been obtained in the Fourier and Laplace domain. The resulting frequency-dependent diffusion coefficient and incoherent dynamical structure factor have been discussed. The model of random walk on a random walk is applied to self-diffusion in the concentrated one-dimensional lattice gas where the correct asymptotic behavior is found.
Date: 1982
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843718290067X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:110:y:1982:i:3:p:535-549
DOI: 10.1016/0378-4371(82)90067-X
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().