Atomistic nonequilibrium computer simulations
William G. Hoover
Physica A: Statistical Mechanics and its Applications, 1983, vol. 118, issue 1, 111-122
Abstract:
Newton's Lagrange's and Hamilton's equations of motion have been modified to include the effects of constraints, nonequilibrium fluxes, and gradients. These nonclassical equations provide estimates of the linear transport coefficients and, through nonlinear dissipative terms, can also simulate nonequilibrium steady states. To illustrate the modified equations of motion, we apply them to a simple three-oscillator problem. The new methods have also been used to study nonlinear problems with large coupled gradients. We describe two examples: the coupling of heat flow with rotation and the simulation of strong shockwaves in dense fluids.
Date: 1983
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437183901802
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:118:y:1983:i:1:p:111-122
DOI: 10.1016/0378-4371(83)90180-2
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().