First passage time problems for a class of master equations with separable kernels
George H. Weiss and
Attila Szabo
Physica A: Statistical Mechanics and its Applications, 1983, vol. 119, issue 3, 569-579
Abstract:
We discuss first passage time problems for a class of one-dimensional master equations with separable kernels. For this class of master equations the integral equation for first passage time moments can be transformed exactly into ordinary differential equations. When the separable kernel has only a single term the equation for the mean first passage time obtained is exactly that for simple diffusion. The boundary conditions, however, differ from those appropriate to simple diffusion. The equations for higher moments differ slightly from those for simple diffusion. Analysis is presented, of a generalization of a model of a random walk with long-range jumps first investigated by Lindenberg and Shuler. Since the equations can be solved exactly one can study the behavior of boundary conditions in the continuum limit. The generalization to a larger number of terms in the separable kernel leads to higher order equations for the first passage time moments. In each case, boundary conditions can be found directly from the original master equation.
Date: 1983
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437183901097
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:119:y:1983:i:3:p:569-579
DOI: 10.1016/0378-4371(83)90109-7
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().