Perturbation of solitons in the classical continuum isotropic Heisenberg spin system
M. Daniel and
M. Lakshmanan
Physica A: Statistical Mechanics and its Applications, 1983, vol. 120, issue 1, 125-152
Abstract:
The dynamics of a one-dimensional classical continuum isotropic Heisenberg ferromagnetic spin system in the presence of a weak relativistic interaction, which causes damping of the spin motion, is considered. The corresponding evolution equation is identified with a damped nonlinear Schrödinger equation in terms of the energy and current densities of the unperturbed system. A direct perturbation method, along the lines of Kodama and Ablowitz, is developed for the envelope soliton solution of the nonlinear Schrödinger equation and the explicit perturbed solution obtained. This solution is found to be valid in a finite domain of the propagation space. To cover the entire region, a uniform solution is constructed using the matched asymptotic expansion technique. Finally, the spin vectors are constructed using the known procedures in differential geometry and the consequences of damping analysed briefly.
Date: 1983
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437183902716
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:120:y:1983:i:1:p:125-152
DOI: 10.1016/0378-4371(83)90271-6
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().