Spin and torsion in the very early universe
G.G.A. Bäuerle and
Chr.J. Haneveld
Physica A: Statistical Mechanics and its Applications, 1983, vol. 121, issue 3, 541-551
Abstract:
In the very early universe with temperature T between 1024 K and 1032 K the gravitational effect of torsion is dominant if particles with spin are sufficiently polarized. The source of the torsion is the spin density and the latter is usually described by a classical theory of Weyssenhoff and Raabe. In this article the spinning particles are described quantum mechanically, i.e. with a Dirac field and the spin density is defined as the source of the torsion. The macroscopic average of the spin density is obtained by the relativistic Wigner function formalism. The expression of the spin density, as derived in this article, is different from the classical one, except when both are zero.
Date: 1983
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437183900092
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:121:y:1983:i:3:p:541-551
DOI: 10.1016/0378-4371(83)90009-2
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().