EconPapers    
Economics at your fingertips  
 

Path integral approach to quantum Brownian motion

A.O. Caldeira and A.J. Leggett

Physica A: Statistical Mechanics and its Applications, 1983, vol. 121, issue 3, 587-616

Abstract: We apply the influence-functional method of Feynman and Vernon to the study of Brownian motion at arbitrary temperature. By choosing a specific model for the dissipative interaction of the system of interest with its environment, we are able to evaluate the influence functional in closed form and express it in terms of a few parameters such as the phenomenological viscosity coefficient. We show that in the limit h→0 the results obtained from the influence functional formalism reduce to the classical Fokker-Planck equation. In the case of a simple harmonic oscillator with arbitrarily strong damping and at arbitrary temperature, we obtain an explicit expression for the time evolution of the complete density matrix ϱ(x, x′, t) when the system starts in a particular kind of pure state. We compare our results with those of other approaches to the problem of dissipation in quantum mechanics.

Date: 1983
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437183900134
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:121:y:1983:i:3:p:587-616

DOI: 10.1016/0378-4371(83)90013-4

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:121:y:1983:i:3:p:587-616