Statistical mechanics of thermal diffusion
Ryoichi Kikuchi,
Takuma Ishikawa and
Hiroshi Sato
Physica A: Statistical Mechanics and its Applications, 1984, vol. 123, issue 1, 227-252
Abstract:
Expressions of the flows of atoms A and B of a binary system in a crystal are derived as the response to the imposed gradients of temperature and chemical potentials. The formulation is done using the pair approximation of the Path Probability Method of irreversible statistical mechanics and atomic migration is assumed to be via the vacancy mechanism. The energy carried by photons (and electrons) under the temperature gradient is assumed to be independent of the atomic flux. For the case near equilibrium, linear relations are derived among the atomic fluxes, the energy flux (associated with atomic flux) and the gradients. The Onsager reciprocal relations are proved to hold among the coefficients, including those related to energy flows. The heat of transport (energy carried by a diffusing atom) and the heat conduction due to atomic flux are thus unambigously derived.
Date: 1984
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437184901134
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:123:y:1984:i:1:p:227-252
DOI: 10.1016/0378-4371(84)90113-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().