The covariant form of the Klein-Kramers equation and the associated moment equations
Gerald R. Kneller and
U.M. Titulaer
Physica A: Statistical Mechanics and its Applications, 1984, vol. 129, issue 1, 81-94
Abstract:
We provide a covariant, coordinate-free formulation of the many-dimensional Klein-Kramers equation for the phase space distribution of a Brownian particle. We construct a complete set of eigenfunctions of the collision operator adapted to the coordinate system, which involve covariant tensorial Hermite polynomials. The Klein-Kramers equation can then be reformulated as a system of coupled equations for the expansion coefficients with respect to this system. Truncation of this system of moment equations and application of a subsidiary condition yields a covariant generalization of Grad's thirteen-moment equations. As an application we give the explicit form of these equations for spherically symmetric, stationary solutions in spherical coordinates. We briefly comment on possible extensions of our treatment to slightly more complicated cases.
Date: 1984
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437184900220
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:129:y:1984:i:1:p:81-94
DOI: 10.1016/0378-4371(84)90022-0
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().