Geometrical and gauge equivalence of the generalized Hirota, Heisenberg and Wkis equations with linear inhomogeneities
M. Lakshmanan and
S. Ganesan
Physica A: Statistical Mechanics and its Applications, 1985, vol. 132, issue 1, 117-142
Abstract:
Integrable evolution equations can take several equivalent forms in a geometrical sense. Here we consider the equivalence of generalized versions involving linear inhomogeneities of three important nonlinear evolution equations, namely the Hirota, Heisenberg ferromagnetic spin and Wadati-Konno-Ichikawa-Shimizu (WKIS) equation through a moving helical space curve formalism and stereographic representation. From the geometrical consideration, we also construct suitable (2 × 2)-matrix linear eigenvalue equations, involving however non-isospectral flow: the eigenvalues evolve in time. However, these systems are also gauge equivalent. We briefly analyse the scattering problem and show that infinite number of constants of motion can exist for these systems.
Date: 1985
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437185901207
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:132:y:1985:i:1:p:117-142
DOI: 10.1016/0378-4371(85)90120-7
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().