EconPapers    
Economics at your fingertips  
 

Anomalous diffusion in one dimension

V. Balakrishnan

Physica A: Statistical Mechanics and its Applications, 1985, vol. 132, issue 2, 569-580

Abstract: In view of the interest in the occurrence of anomalous diffusion (〈r2(t)〉 ∼ t2H, 0 < H < 12) in several physical circumstances, we study anomalous diffusion per se in terms of exactly solvable one-dimensional models. The basic idea is to exploit the fact that temporal correlations lead directly to anomalous diffusion, and provide solvable analogues of more realistic physical situations. We first derive a general equation for a deterministic trajectory xε(t) that comprehensively characterizes the diffusive motion, by finding the ε-quantiles of the time-dependent probability distribution. The class of all diffusion processes (or, equivalently, symmetric random walks) for which xε(t) ∼ t12, and, subsequently, xε(t) ∼ tH, is identified. Explicit solutions are presented for families of such processes. Considering random walks whose step sequences in time are governed by renewal processes, and proceeding to the continuum limit, a true generalization of Brownian motion (the latter corresponds to the limiting value H = 12) is obtained explicitly: 〈x2(t)〉 ∼ t2H; the diffusive spread of the initial condition is given by xε(t) ∼ tH; and the first passage time from the origin to the point x has a stable Lévy distribution with an exponent equal to H.

Date: 1985
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437185900287
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:132:y:1985:i:2:p:569-580

DOI: 10.1016/0378-4371(85)90028-7

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:132:y:1985:i:2:p:569-580