An itinerant electron model with crystalline or magnetic long range order
Tom Kennedy and
Elliott H. Lieb
Physica A: Statistical Mechanics and its Applications, 1986, vol. 138, issue 1, 320-358
Abstract:
A quantum mechanical lattice model of fermionic electrons interacting with infinitely massive nuclei is considered. (It can be viewed as a modified Hubbard model in which the spin-up electrons are not allowed to hop.) The electron-nucleus potential is “on-site” only. Neither this potential alone nor the kinetic energy alone can produce long range order. Thus, if long range order exists in this model it must come from an exchange mechanism. N, the electron plus nucleus number, is taken to be less than or equal to the number of lattice sites. We prove the following: (i) For all dimensions, d, the ground state has long range order; in fact it is a perfect crystal with spacing √2 times the lattice spacing. A gap in the ground state energy always exists at the half-filled band point (N = number of lattice sites). (ii) For small, positive temperature, T, the ordering persists when d ⩾ 2. If T is large there is no long range order and there is exponential clustering of all correlation functions.
Date: 1986
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437186901883
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:138:y:1986:i:1:p:320-358
DOI: 10.1016/0378-4371(86)90188-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().