Poincaré's theorem and unitary transformations for classical and quantum systems
Tomio Y. Petrosky and
Ilya Prigogine
Physica A: Statistical Mechanics and its Applications, 1988, vol. 147, issue 3, 439-460
Abstract:
Poincaré's celebrated theorem on the nonexistence of analytical invariants of motion is extended to the case of a continuous spectrum to deal with large classical and quantum systems. It is shown that Poincaré's theorem applies to situations where there exist continuous sets of resonances. This condition is equivalent to the nonvanishing of the asymptotic collision operator as defined in modern kinetic theory. Typical examples are systems presenting relaxation processes or exhibiting unstable quantum levels. As the result of Poincaré's theorem, the unitary transformation, leading to a cyclic Hamiltonian in classical mechanics or to the diagonalization of the Hamiltonian operator in quantum mechanics, diverges. We obtain therefore a dynamical classification of large classical or quantum systems. This is of special interest for quantum systems as, historically, quantum mechanics has been formulated following closely the patterns of classical integrable systems. The well known results of Friedrichs concerning the coupling of discrete states with a continuum are recovered. However, the role of the collision operator suggests new ways of eliminating the divergence in the unitary transformation theory.
Date: 1988
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437188901641
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:147:y:1988:i:3:p:439-460
DOI: 10.1016/0378-4371(88)90164-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().