EconPapers    
Economics at your fingertips  
 

An extended Weyl-Wigner transformation for special finite spaces

D. Galetti and A.F.R. de Toledo Piza

Physica A: Statistical Mechanics and its Applications, 1988, vol. 149, issue 1, 267-282

Abstract: We extend the Weyl-Wigner transformation to those particular degrees of freedom described by a finite number of states using a technique of constructing operator bases developed by Schwinger. Discrete transformation kernels are presented instead of continuous coordinate-momentum pair system and systems such as the one-dimensional canonical continuous coordinate-momentum pair system and the two-dimensional rotation system are described by special limits. Expressions are explicitly given for the spin one-half case.

Date: 1988
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437188902191
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:149:y:1988:i:1:p:267-282

DOI: 10.1016/0378-4371(88)90219-1

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:149:y:1988:i:1:p:267-282