Quasi-wetting on a sphere
R. Hołyst and
A. Poniewierski
Physica A: Statistical Mechanics and its Applications, 1988, vol. 149, issue 3, 622-630
Abstract:
Wetting phenomena on a sphere of radius R are studied in the context of the Sullivan model. Neither a first nor a continuous transition is found for finite R. Only in the strict limit of R→∞ a second-order transition appears. For temperatures T higher than the wetting temperature in a flat geometry, T∞w, the thickness l of the enhanced density layer, which forms on the surface of the sphere, is for large R proportional to In R.
Date: 1988
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437188901239
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:149:y:1988:i:3:p:622-630
DOI: 10.1016/0378-4371(88)90123-9
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().