On the application of normal forms near attracting fixed points of dynamical systems
Tassos Bountis and
George Tsarouhas
Physica A: Statistical Mechanics and its Applications, 1988, vol. 153, issue 1, 160-178
Abstract:
It is shown on an integrable example in the plane, that normal form solutions need not converge over the full basin of attraction of fixed points of dissipative dynamical systems. Their convergence breaks down at a singularity in the complex time plane of the exact solutions of the problem. However, as is demonstrated on a nonintegrable example with 3-dimensional phase space, the region of convergence of normal forms can be large enough to extend almost to a nearby hyperbolic fixed point, whose invariant manifolds “embrace” the attracting fixed point forming a complicated basin boundary. Thus, in such problems, normal forms are shown to be useful in practice, as a tool for finding large regions of initial conditions for which the solutions are necessarily attracted to the fixed point at t → ∞.
Date: 1988
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437188901094
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:153:y:1988:i:1:p:160-178
DOI: 10.1016/0378-4371(88)90109-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().