EconPapers    
Economics at your fingertips  
 

Determination of fractal dimensions for geometrical multifractals

Tamás Tél, Ágnes Fülöp and Tamás Vicsek

Physica A: Statistical Mechanics and its Applications, 1989, vol. 159, issue 2, 155-166

Abstract: Two independent approaches, the box counting and the sand box methods are used for the determination of the generalized dimensions (Dq) associated with the geometrical structure of growing deterministic fractals. We find that the multifractal nature of the geometry results in an unusually slow convergence of the numerically calculated Dq's to their true values. Our study demonstrates that the above-mentioned two methods are equivalent only if the sand box method is applied with an averaging over randomly selected centres. In this case the latter approach provides better estimates of the generalized dimensions.

Date: 1989
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437189905633
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:159:y:1989:i:2:p:155-166

DOI: 10.1016/0378-4371(89)90563-3

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:159:y:1989:i:2:p:155-166