Lévy walk approach to anomalous diffusion
J. Klafter,
A. Blumen,
G. Zumofen and
M.F. Shlesinger
Physica A: Statistical Mechanics and its Applications, 1990, vol. 168, issue 1, 637-645
Abstract:
The transport properties of Lévy walks are discussed in the framework of continuous time random walks (CTRW) with coupled memories. This type of walks may lead to anomalous diffusion where the mean squared displacement 〈r2(t)〉∼tα with α≠1. We focus on the enhanced diffusion limit, α>1, in one dimension and present our results on 〈r2(t)〉, the mean number of distinct sites visited S(t) and P(r, t), the probability of being at position r at time t.
Date: 1990
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719090416P
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:168:y:1990:i:1:p:637-645
DOI: 10.1016/0378-4371(90)90416-P
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().